Towards automated control of embryonic stem cell pluripotency
نویسندگان
چکیده
منابع مشابه
Molecular Mechanisms of Embryonic Stem Cell Pluripotency
Embryonic stem (ES) cells isolated from the inner cell mass (ICM) of blastocysts possess the defining pluroptency: unlimited self-renewal and giving rise to all cells of the organ‐ ism[1, 2]. Thus, ES cells hold great promise for regenerative medicine to treat many dis‐ eases including heart failure, diabetes, Alzheimer’s and Parkinson’s disease by replacing the damaged cells with ES cell-deriv...
متن کاملDifferential roles of Sall4 isoforms in embryonic stem cell pluripotency.
Murine embryonic stem (ES) cells are defined by continuous self-renewal and pluripotency. A diverse repertoire of protein isoforms arising from alternative splicing is expressed in ES cells without defined biological roles. Sall4, a transcription factor essential for pluripotency, exists as two isoforms (Sall4a and Sall4b). Both isoforms can form homodimers and a heterodimer with each other, an...
متن کاملThe role of PTIP in maintaining embryonic stem cell pluripotency.
Pax transactivation domain-interacting protein (PTIP) is a ubiquitously expressed, nuclear protein that is part of a histone H3K4 methyltransferase complex and is essential for embryonic development. Methylation of H3K4 is an epigenetic mark found on many critical developmental regulatory genes in embryonic stem (ES) cells and, together with H3K27 methylation, constitutes a bivalent epigenetic ...
متن کاملPrion Protein Expression Regulates Embryonic Stem Cell Pluripotency and Differentiation
Cellular prion protein (PRNP) is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB) differentiation in mouse Prnp-null (KO) and WT embry...
متن کاملCDK8 maintains tumor dedifferentiation and embryonic stem cell pluripotency.
CDK8 is a cyclin-dependent kinase that mediates transcriptional control of pathways linked to both cancer and stem cells. In this study, we show that CDK8 is required for both tumor growth and maintenance of tumor dedifferentiation in vivo and uncover a common role for CDK8 in controlling cancer and stem cell function. Acute CDK8 loss in vivo strongly inhibited tumor growth and promoted differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2019
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2019.12.240